Performance of Biometric Sample Quality Measures Definition, Utility, and Performance Patrick Grother + Elham Tabassi National Institute of Standards and Technology ### Quality is Just a Scalar! #### Three Kinds of Quality ### Fingerprint Quality ### NIST Fingerprint Image Quality **feature extraction:** computes image content and fidelity characteristics and results in an eleven dimensional feature vector. **neural network:** classifies feature vectors into five classes of quality based on various quantiles of the normalized match score distribution. #### Uses of Quality Numbers - Conditional reacquisition - Acceptance for enrollment - For credential issuance (visa, passport, access card, PIV) - Acceptance for verification - Of the samples just captured which one to send for matching? - Or acquire still more? - Acceptance for identification - Is the subject offering a poor sample deliberately? - Initiate invocation of special processing or matching algorithms - Quality directed fusion - Quality Monitoring - Are some biometric field locations giving low quality? - Only in the evening? #### Quality Values vs. Defect Bits - Quality is a summary of bad (or good) traits - But defect detection is more specific - Is the fingerprint image smudged? - Is the face image non-frontal? - Is the eyelid three-quarter closed? - Knowledge of defect allows - Instruction to user #### Matching Involves Two Samples When Q1 and Q2 are both high the matching score is high. Furthermore function is monotonic ... BUT when the enrollment sample is of good quality and better than that of the verification sample, the search sample's quality is sufficient to predict performance. ## Why Quality as a Performance Predictor is Difficult ``` Authentication Score, S = F(Sample1, Sample2) ``` Quality value, Q1 = Q(Sample1) Quality value, Q2 = Q(Sample2) Score Estimate, E = P(Q1, Q2) ### Quality and Performance **FAR** #### **DET Curves** - Testing Case A - Enrol samples of quality X - Attempt authentication with samples of quality X - Testing Case B - Enrol samples with quality ≥ X - Attempt authentication with samples of any quality #### Case A vs B $$Q_1 = Q_2 = X$$ Q2 unconstrained #### Quality vs. False Non-match Rate Increasing quality gives lower false rejection rates - Statistically distinct levels of performance - Five levels, not twenty #### Error vs. Reject Metric - Match two samples, get score S - Compute quality of enrollment sample, Q1 - Compute quality of authentication sample, Q2 - \square Compute Q = min(Q1, Q2) - Compute FNMR at some reasonable threshold t - Sort (Q, S) on Q in decreasing order of quality - Discard fraction x of lowest quality pairs - Recompute FNMR - Plot FNMR(x) #### Evaluation of a Quality Measure Existing quality measures are NOT perfect predictors of the worst case matching scores. #### What Evaluation Data? #### Conclusions - Biometric quality assessment is an operationally important - Quality assessment is difficult - Relatively under-researched - Quality measures can be evaluated if they're supposed to predict performance - In large scale matching trials - Primary target should be false non-match rate - Quality can usefully be represented as an integer - More statistically separable levels are better - Quality measures likely to perform better if they reflect sensitivities of the matcher - Matcher dependence is OK ### Thank you patrick.grother@nist.gov #### Quality Development cf. Pharmacology! **Patient** Biometric System Drug (given to patient) Sample (given to system) Combination therapy ≥ 2 samples involved in matching Efficacy (will it work) Performance (will it match) Clinical trial Biometric test Low quality samples produce false **Toxicity** acceptances and duplicate enrollments (poisons the patient) (poisons the matcher) Drug discovery Discover failure modes and (molecular targets) sensitivities of the matcher Goal is to tailor drugs and Goal is to only collect samples suited to matcher to narrow clinical trials Discovery methods follow Image quality and failure analysis follows years using images in biometric systems decades of therapeutic use ### NIST Biometric Quality Workshop March 8-9 NIST Gaithersburg Maryland http://www.itl.nist.gov/iad/894.03/quality/workshop/ #### NIST Biometric Quality Workshop #### **Applications** What are the use-cases, business-cases and economics? Are there applications beyond sample re-acquisition, quality assurance and survey, detection of evasion, and fusion? #### **Capabilities** Can quality measurements adequately select the best sample from a stream? Can real-time measurements of quality be used to reduce FTE and FTA? What can be achieved by sensor design alone? #### **Standardization** Does conformance to existing data format standards guarantee quality? Would standard quality corpora be useful? Or standard reference algorithms? #### **Modalities** What methods exist for assessment of face, finger, iris and speech quality? To what extent does good design guarantee quality? Does multimodal, multi-sample, or multi-sensor acquisition solve quality problems? #### **Evaluation** Should quality be predictive of recognition performance, and evaluated as such? #### Research and Development What research is being done? Is the amount of research commensurate with its operational importance? Should research funding go into quality-by-design? Quality measurement? Or both? ## Quality is not about Human Perception Quality depends how close you look #### The Core Biometric Function matched with = 0.87 Genuine Comparison matched with = 0.03 Impostor comparison